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Some disclaimers about this reminder. This recap is provided as an additional support to help you connect the
equations covered in the course to graphical representation and economic interpretation. The course and the tutorials
remain the only reference. This reminder is not necessary, and by all means not sufficient, to study Macroeconomics
1. Should you have any question or remark, please reach out to clement.montes@ensae.fr or nina.stizi@ensae.fr

Objectives of the reminder

1. Recall the key properties of the production function.

2. Define the growth rate of a variable.

3. Explain the law of motion of capital per unit of efficient labor.

4. Define the steady state of an economy.

5. Explain why the growth rate of the economy is not determined by the saving rate.

6. Recall the golden rule of capital accumulation.

7. Represent the dynamic evolution of endogenous variables following a shock outside the steady state.

1 Properties of the production function

The economy produces output (Y), using capital (K) and efficient labor (AL). The production of the economy is such that
Y = F (K,AL). F is such that:

Property Mathematical definition Intuition

Essentiality condition F (K, 0) = F (0, AL) = 0 If one input is missing, production is not possible.
The marginal productivity in

each factor is strictly
increasing

FK > 0, FL > 0
An increase in any factor increases output at the

margin.

F is strictly concave in both
inputs

FKK < 0, FLL < 0
If only one input increases by ν, the production is

multiplied by less than ν.

F has Constant Returns to
Scale (CRS)

∀λ ∈ R,

F (λK, λAL) = λF (K,AL)

If all inputs increase by ν, the production is also
increased by ν.

Inada condition at zero
lim

K→0+
FK(K,AL) = +∞

lim
L→0+

FL(K,AL) = +∞

When an input is scarce (input quantity goes to 0),
a slight increase in its quantity leads to an infinite

increase in the production

Inada condition at infinity
lim

K→+∞
FK(K,AL) = 0+

lim
L→+∞

FL(K,AL) = 0+

When an input is abundant, a slight increase in its
quantity doesn’t affect the quantity produced

These assumptions underpin all the graphical representations we will use throughout the semester. The essentiality condition
is illustrated by the pink dot in figure 1 where the production function intersects the origin. Strictly positive and diminishing
marginal productivity of each factor is reflected in the upward direction of the blue arrows and in their progressively flatter
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orientation as capital becomes more abundant. The Inada conditions are captured by the colored areas in figure 1: when capital
is scarce, a small increase has a large effect on output (the peaked region), whereas when capital is abundant, additional capital
has only a marginal impact (the flat region). An analogous shape applies to labor. Finally, constant returns to scale are best
illustrated in three dimensions: when both inputs (K and L) increase proportionally, output increases in the same proportion,
implying a linear production surface.

Figure 1: Production in Function of the Per-Efficient Labor Unit Capital

Why are those properties useful? Throughout the course and tutorials, the Inada properties and concavity ensure the conver-
gence to a unique equilibrium. Constant returns to scale (homogeneity of degree one) allow us to eliminate scale effects and
focus on a single endogenous variable on the production side: capital per unit of effective labor.
In practice: A common specification is the Cobb–Douglas production function: Y = AKαL1−α, which respects all the above
condition. To empirically test the model, we have compared the estimated value of α with its value according to Kaldor’s
stylized facts.

• α is an exogenous parameter

• α represents the share of remuneration of capital across national income.

– Proof: if the market of inputs are in pure and perfect competition, inputs are paid at their marginal productivity
(MP ), which is for example MPK = ∂Y

∂K
= α Y

K
. The total price paid for capital in the aggregate economy is

MPK ×K = αY Rewriting the quantity in term of national income (which is Y) provides with the result.

2 Growth rate

Definition: The growth rate of a variable Xt is the percentage change in Xt within an infinitesimal time period t and t + dt.
Mathematically, the quantity Ẋt

Xt
captures it. You can think of that quantity as Xt+dt−Xt

Xt
× 1

dt
when dt is really small. It coin-

cides with the derivative with respect to time of the logarithm of the variable. Intuitively, it captures the speed at which Xt grows.

How to compute a growth rate in Neo-Keynesian models? Consider a variable of the form Xt =
∏

k xk,t. One is interested in
the growth rate of Xt. By taking the logarithm of this variable, it follows: log(Xt) =

∑
k log(xk,t). Deriving both sides with

respect to time, it follows that Ẋt
Xt

=
∑

k

˙xk,t

xk,t
where the right-hand side is the growth rate of Xt and the left-hand side, the sum

of the rate of variation of the xk,t in percent.

In Solow-Swan, we are mainly interested in κt =
Kt

AtLt
, the stock of capital per unit of efficient labor. It typically follows:

κ̇t

κt
=

K̇t

Kt
− Ȧt

At︸︷︷︸
=g

− L̇t

Lt︸︷︷︸
=n

(1)

with g the growth rate of technological change and n the growth rate of population both assumed exogenous.

What is Growth? Growth corresponds to the growth rate of production per capita at the steady state. It is economically
meaningful because higher production growth translates into higher consumption possibilities over time. Importantly, growth
is not about the level of production at the steady state, but the growth rate of production per capita at the steady
state. Confusing these two concepts would be akin to equating the value of a function at a point with its derivative at that
point.
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3 Key equations

3.1 Extensive form

Kt+dt = Kt + Itdt − δKtdt =⇒ Kt+dt −Kt

dt
= It − δKt (2)

When dt → 0, this equation yields the law of motion of capital:

K̇t = It − δKt

Intuitively, the only way to increase the stock of capital is to invest. However, possessing capital is costly, because it depre-
ciates. Macroeconomic models assume that this depreciation is proportional to the stock of capital.

The proportionality assumption made in Solow-Swan provides It = sYt and further simplifies this equation to K̇t = sYt−δKt =

sF (Kt, AtLt)− δKt.

3.2 Intensive form

If one multiplies by κt on both sides of Equation (1), it follows that κ̇t =
K̇t

AtLt
− (g + n)κt. Combining this equation with the

law of motion of capital obtained in the Solow-Swan framework, one obtains the law of motion of capital per unit of efficient
labor:

κ̇t = syt − δκt − (g + n)κt (3)

The left-hand side of the equation represents the evolution across time of the stock of capital per unit of efficient labor. The
right hand-side has three terms. The first term represents investment, expressed in intensive form. The second term represents
the depreciation of the stock of capital per-effective labor. The third term represents the dilution of the stock of capital per
unit of efficient labor.

4 Steady state

Definition: at the steady state, initial conditions are such that all variables are not zero and grow at a constant rate.

Why are we interested in the steady state? It corresponds to an equilibrium of the economy. To study the impact of a shock to
the economy, we model it as a deviation to the steady state. The convergence back toward that steady state provides guidance
on the variation of aggregate variables.

Does the steady state exist in real life? It is hard to measure. We simply assume we were at the steady state before the study
of a shock.

How to determine which initial conditions are needed? On the one hand, one must consider which variable is driving the en-
dogenous dynamics. In the Solow-Swan model, the production can be fully re-expressed in terms of capital per-effective labor.
Production is yt = f(κt) thanks to CRS. At the equilibrium of the good produced, aggregate production is aggregate demand,
which guarantees Yt = Ct+ It. The consumption per-effective labor can thus be re-expressed in term of production per-effective
labor γt ≡ Ct

AtLt
= (1− s)yt thanks to the proportionality assumption. The dynamic of κt thus fully characterizes the dynamic

of every variables of interest. On the other hand, initial conditions must correspond to stock variables, since flows can be
adjusted by economic agents. In later models with endogenous consumption decisions, households will also optimally choose
their consumption level at date 0. The only initial condition needed in Solow-Swan is κ0.

Consequence at the steady state:
At the steady state κ̇t

κt

3
= s f(κt)

κt
− δ− n− g = constant. So f(κt)

κt
is constant across time, but f is concave and derivable, so

x → f(x)
x

is strictly increasing (similar to the derivative of f in 0), and surjective in R, and thus bijective. It follows κt actually
does not depend on time at the steady state. Eventually κ̇t = 0. Remember that the definition of the steady state does
not directly provide that all variables are constant across time: we demonstrated it for every framework.
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How to represent the steady state? As a consequence, at the steady state, the left hand side of equation (3) is 0: thus the
force of accumulation of capital (i.e. investment) is perfectly counterbalanced by depreciation and dilution. This situation only
happens at point A in figure 2.

Figure 2: Graphical Representation of the Steady State in the Solow-Swan Model

5 Determinant of growth

In the tutorial we derived the level of output per unit of efficient labor at the steady state. The production function included
two types of capital: human and physical. Simplifying this expression to the case of a production function with only κ yields:

y∗ =

(
s

n+ g + δ

) α
1−α

(4)

Equation 4 shows that the stedy-state level of production per-effective labor depends on the saving rate of the economy. However,
again, the level of production at the steady state is different than the growth rate of the economy.

Yt

Lt
= Aty

∗ =⇒
˙(Yt/Lt)

Yt/Lt
=

Ȧt

At︸︷︷︸
=g

+
ẏ∗

y∗︸︷︷︸
=0

= g (5)

Intuitively, the study of growth focuses on the long run. While the saving rate determines how the economy converges to
the steady state, our primary interest is the mechanism driving increases in output per capita once the economy has reached
the steady state. Graphically, a change in the saving rate shifts in figure 2 the green curve up or down, moving the steady-state
point (for example, from A → B). However, we are concerned with the determinants that drive output per capita at the
steady-state (i.e. once we reached B in that example).

6 Optimal saving rate

6.1 Golden rule of capital accumulation

The government is interested in the saving rate that maximizes consumption, which serves as a proxy for household welfare.
Practically, even if the saving rate is exogenous, it makes sense to study such a scenario if you consider that aggregate savings
are composed of public and private savings. A government could thus manipulate its saving rate by saving more or less, thus
impacting the aggregate saving rate.
To determine sgold, start the consumption per unit of efficient labor ct = (1 − s)y∗, replace the value of y∗ -see equation (4)-,
and differentiate with respect to s. Similarly, you can derive consumption with respect to the stock of capital per-effective labor,
to find the steady state that maximizes consumption. This yields the golden rule of capital accumulation:

f ′(κ∗
gold) = δ + n+ g

Graphically, the goal is to maximize consumption at the steady state. In figure 3, consumption corresponds to the ver-
tical distance between the black production curve and the green investment curve. To find the steady state that maximizes
consumption, we focus on the curves that remain fixed as the saving rate changes: the black production curve and the red
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Figure 3: Graphical Representation on How to Find the Golden Rule

depreciation+dilution line. The golden rule states that, at the optimal steady state, the slope of the production function must
equal the sum of depreciation and dilution. Graphically, this means finding the point on the black curve where a tangent can
be drawn with the same slope as the red line. There is a unique sgold allocating this stock of capital at the steady state.

6.2 Dynamic inefficiency

Carefully choosing the saving rate is important to avoid dynamic inefficiency, which occurs when savings are excessively high.
Intuitively, a very high saving rate leads the economy to invest heavily in new capital. However, due to diminishing marginal
productivity, this large capital stock generates only a small increase in output. As a result, capital may depreciate faster than
it contributes to production, making the economy inefficient.
In other words, starting from such an inefficient point, it is possible to find a path along which consumption increases continuously
until a new, steady-state with higher consumption. This gradual increase in consumption arises because households save less,
reducing the capital stock. Graphically, this moves the economy from the right side of the horizontal colored area of the
production function in figure 1 toward the left side of this colored area, where additional capital contributes more effectively to
production.

7 Study of possible shocks

Since the government can identify the optimal saving rate, it can implement policies to guide the economy toward this level.
Similarly, one can consider technological shocks that alter the production function, affecting the steady-state output and
consumption.

If a shock happens, how does production react? Since, yt = f(κt) the response of output depends on both the shape of the
production function and the stock of capital per unit of effective labor. The capital stock κt is a stock variable, so it evolves
continuously over time1.
As long as f is continuous, a shock to the economy cannot induce a discontinuous jump in output per unit of effective labor.
Indeed, the capital stock kt (or equivalently in per-effective-labor unit κt) cannot jump, hence the production cannot jump.

If a shock happen, how does consumption react? However consumption per unit of efficient labor is given by ct = (1 −
s)f(κt). A sudden increase in the saving rate can make consumption jump discontinuously, since consumption is a flow
variable2. If the shock instead affects the production function, both output yt and consumption ct can experience discontinuous
changes, because f(.) enters directly into both expressions.

1An exception is a sudden destruction of capital, such as from a natural disaster like an earthquake or a storm.
2Intuitively, consider the COVID-19 pandemic: when stores closed, you could not consume, but your capital stock was not destroyed.

Consumption varied abruptly, while the stock of capital remained continuous.
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